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Abstract

Variational autoencoders (VAEs) have been successfully applied to complex input
data such as images and videos. Counterintuitively, their application to simpler,
heterogeneous data—where features are of different types, often leads to under-
whelming results. While the goal in the heterogeneous case is to accurately ap-
proximate all observed features, VAEs often perform poorly in a subset of them. In
this work, we study this feature overlooking problem through the lens of multitask
learning (MTL), relating it to the problem of negative transfer and the interaction
between gradients from different features. With these new insights, we propose to
train VAEs by leveraging off-the-shelf solutions from the MTL literature based on
multi-objective optimization. Furthermore, we empirically demonstrate how these
solutions significantly boost the performance of different VAE models and training
objectives on a large variety of heterogeneous datasets.

1 Introduction

Deep generative models have enjoyed great success in the recent years. In the case of variational
autoencoders (VAEs) [15], they have been successfully applied to different domains such as images,
text, and temporal data [27, 38, 43, 22]. It thus comes as a surprise that their application to heteroge-
neous data—where each feature is of a different type—remains a challenge, as models tend to focus
on modelling a subset of features while overlooking the rest, a phenomenon we refer to as feature
overlooking.

In the recent years, a number of works have put attention on heterogeneous VAEs, and thus ways of
addressing feature overlooking. As a result, new pre-processing mechanisms [11] and models [26, 2]
to palliate feature overlooking have been proposed, as well as models that attempt to completely
side-step the problem [20]. Interestingly, Nazabal et al. [26] hypothesized that feature overlooking
was a result of disparities between gradients with respect to each feature, and Javaloy and Valera [11]
drew some connections between heterogeneous VAEs and multitask learning (MTL).

In this work we formalize these connections, showing that heterogeneous VAEs are intimately related
with hard parameter sharing architectures in MTL, and that feature overlooking can be thought of as
a particular instance of negative transfer in MTL [29]. As a result, we propose finding the proper
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algorithm for training, thus decoupling modelling from optimization, and leveraging off-the-shelf
MTL algorithms based on multi-objective optimization (MOO). We empirically validate our findings,
showing that this multi-objective “cocktail” of algorithms significantly boosts the performance on a
great variety of models, training losses, and heterogeneous datasets.

2 Preliminaries and background

2.1 Variational autoencoders for heterogeneous data

Variational autoencoders (VAEs) [15] are a popular class of deep generative models to optimize
the marginal likelihood (evidence) of our dataset—i.i.d. samples from a random variable X—by
assuming the existence of a latent random variable Z that allows capturing the statistical dependencies
across observed features, while leading to a tractable objective to optimize.

A VAE is composed of two main components. First, a generative model pθ(X,Z) = pθ(X|Z)p(Z),
where p(Z) is the prior distribution of Z, and pθ(X|Z) is the likelihood of X given Z, whose
parameters are parametrized by a neural network η (decoder) with input Z and learnable parameters
θ, that is, pθ(X|Z) = p(X; η(Z; θ)). Second, an approximation to the posterior, p(Z|X), known as
the variational distribution, qφ(Z|X), similarly parametrized by a neural network (encoder) that takes
X as input, and which is governed by the set of parameters φ.

As mentioned above, introducing Z allows maximizing the log-evidence, log pθ(X), in a tractable
way. More in detail, VAEs optimize the log-evidence by instead maximizing a tractable lower-bound,
log pθ(X) ≥ L(X, pθ, qφ), and by leveraging first-order optimization techniques from deep learning.
While there are a number of suitable losses (e.g., [15, 7, 17]), optimizing any of them translates to
maximizing the log-evidence, and they all solely depend on θ and φ through pθ and qφ, respectively.

In this work, we assume X to be a heterogeneous random variable of size D. In other words,
X is composed of D different univariate random variables that describe each feature of the dataset,
X = [x1,x2, . . . ,xD], and each feature is potentially different from the rest (discrete vs. continuous,
positive vs. real, etc). This is a key property, as it determines the choice of the parametric family
for pθ. Because there are no restrictions on each xd, the usual practice (see, e.g., [2, 20, 26, 24]) is to
assume that the likelihood fully factorizes across features,

pθ(X|Z) =
D∏
d=1

pd(xd; ηd(Z; θ)), (1)

where each pd is a potentially different parametric family (normal, log-normal, categorical, etc), and
their parameters are jointly produced by the decoder given Z and θ.

2.2 Multitask learning and negative transfer

In multitask learning (MTL), our goal is to jointly solve a set of tasks. Let us assume that we have
a set of K tasks that share input X , and each task defined by its own loss function Lk. Our goal
then is to solve the following MOO problem [30]: minθ (L1,L2, . . . ,LK). Instead of solving this
problem, in practice one instead optimizes a weighted sum of losses, minθ

∑
k ωkLK , obtaining a

scalar optimization problem for which first-order methods can be easily applied.

Unfortunately, this simplified objective come at the cost of negative transfer [29]. This phenomenon
describes the negative effect that jointly optimizing different tasks can have, potentially hampering
training progress and, as a result, ending up with a suboptimal model that poorly solves some tasks.

Extensive literature have studied ways to palliate negative transfer [42, 10, 35, 23, 39, 16, 19, 36, 45,
21, 33, 14]. Here, we focus on multi-objective gradient-based solutions, which study the effect of
summing losses in the gradient updates of shared parameters. The premise is that the updates of θ
during optimization follow the gradient

∑
k ωk∇θLk, and thus differences in magnitude and direction

across task gradients can lead to overlooking or cancelling out, respectively, the gradient updates
of a subset of tasks. In the recent years, a number of works have appeared to address magnitude
[5, 18, 30, 9] and direction [6, 44, 12, 40] conflicts between task gradients during training.
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Figure 1: Simplified computational graph of a heterogeneous VAE (see § 3.1). To produce feature-
specific parameters, the model splits its parameters into shared (φ, θsh) and exclusive (wd) parameters,
resembling a hard parameter sharing architecture commonly used in MTL.

2.3 Feature overlooking in heterogeneous VAEs

Similar to the negative effect that naïvely adding up task losses has in MTL, assuming that the
likelihood factorizes as in Eq. (1) in heterogeneous VAEs raises some difficulties during training.
Specifically, a VAE trained on highly heterogeneous data—for example, combinations of continuous
and discrete features, tends to incur some overlooking for a subset of the features, poorly performing
on this subset despite obtaining a good model evidence on average, as illustrated in [26, 11, 20].

Exactly tracing back the first evidences of feature overlooking is tough, as modelling failures are
rarely documented. The usual practice is to avoid heterogeneity by means of continuous extensions of
discrete features (e.g., adding uniform noise [34]). In the recent years, however, feature overlooking
has gained some attention. Nazabal et al. [26] first reported this problem, proposing a hierarchical VAE
(HI-VAE) with the idea that more structured latent spaces should alleviate likelihood differences. More
recently, Ma et al. [20] proposed VAEM, a model which attempts to side-step feature overlooking
by first learning the marginals. Unfortunately, this model cannot perform better than learning the
marginals independently under the presence of fully-observable data.

3 Boosting heterogeneous VAEs

3.1 Feature overlooking as negative transfer

We are now ready to draw connections between feature overlooking (§ 2.3) and negative transfer
(§ 2.2), suggesting that both problems are intimately related. There are several aspects that bond
feature overlooking and negative transfer together:

Goal and symptomatology. Task-impartiality in MTL [18] shares a similar spirit as heterogeneous
data modelling. The goal is not to simply minimize the error, but doing so while properly learning all
tasks/features, without overlooking any of them. Moreover, both settings manifest similar training
difficulties, leading to models that overlook subsets of tasks/features.

Architectural similarity. In MTL, hard parameter sharing architectures [4] are characterized by
having a shared network (backbone), followed by a set of task-specific networks (heads) that learn to
solve their assigned task, given the (shared) output of the backbone.

One key insight is that the factorization assumed in Eq. (1) forces VAEs to follow a similar structure.
As an example, suppose we use a multi-layer perceptron (MLP) as a decoder. Denote by W the
last weight matrix of the decoder, and by y the output of the decoder up to that point, i.e., the
input of the last layer. From Eq. (1), we know that the decoder produces all likelihood parameters,
and by focusing only in the last layer we get that η(Z; θ) := [η1, η2, . . . , ηD] (Z; θ) = yW . This
last equation lets us easily identify y as the last-shared feature of the network, and the columns of
W = [w1,w2, . . . ,wD] as the exclusive parameters for each likelihood function pd, thus having a
clear parallelism with MTL architectures. Figure 1 depicts the described decomposition.

Gradient conflicts. Similar to negative transfer, gradient conflicts across features can explain the
appearance of feature overlooking. Moreover, we show that it occurs independently of the form of L.

Feature overlooking happens when the model fails to explain some data features, and the goodness-
of-fit of a model is measured by pd(xd|ηd(Z; θ)) and pθ(X|Z). Therefore, only the derivative of L
through pθ should lead to this unfair prioritization of features, as ∇qφL is feature agnostic. Using
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Table 1: Test reconstruction error for different VAE models and heterogeneous datasets. Numbers
represent the median over five different seeds. Bold numbers are statistically different (p-value < 0.1)
from their counterpart, according to a corrected paired t-test [25].

Adult Credit Wine Diam. Bank IMDB HI rwm5yr labour

VAE Vanilla 0.21 0.12 0.08 0.18 0.19 0.08 0.17 0.10 0.10
MOO 0.09 0.04 0.07 0.13 0.05 0.04 0.03 0.02 0.06

IWAE Vanilla 0.22 0.13 0.07 0.18 0.21 0.09 0.15 0.09 0.09
MOO 0.12 0.05 0.06 0.12 0.17 0.03 0.04 0.02 0.06

DReG Vanilla 0.23 0.13 0.07 0.17 0.20 0.08 0.15 0.09 0.09
MOO 0.16 0.07 0.06 0.13 0.17 0.04 0.04 0.02 0.07

HI-VAE Vanilla 0.12 0.10 0.12 0.11 0.11 0.07 0.10 0.04 0.10
MOO 0.08 0.06 0.11 0.01 0.10 0.05 0.12 0.02 0.06

Fig. 1 as reference, we split the gradient with respect to the shared parameters (φ, θsh → pθ → L)
into two more parts (φ, θsh → y → η → pθ → L) using the chain rule:

∇φ,θshpθ · ∇pθL(X, pθ, qφ) = ∇φ,θshy ·
(∑

d

∇yηd · ∇ηdpθ
)
· ∇pθL(X, pθ, qφ). (2)

Equation (2) shows that, in order to update any shared parameters to increase the model goodness-
of-fit, the gradient computation involves a sum over the feature gradients, which can lead to the
same problems as gradient conflicts in MTL (§ 2.2). Equation (2) also shows that this problem is
agnostic to the form of L, as the split-and-merge computations are encapsulated in a small part of the
computational graph (red box in Fig. 1, and parenthesis in Eq. (2)).

3.2 The multi-objective cocktail

We have shown in § 3.1 that feature overlooking can be explained via differences in feature gradients,
just as negative transfer, and that heterogeneous VAEs exhibit a similar structure as hard parameter
sharing architectures in MTL. These similarities allow us to leverage existing solutions in MTL based
on MOO to palliate conflicting gradients. More in detail, these solutions attempt to homogenize the
gradient across tasks before adding them up, so that the contribution of each task to the parameters
update is similar, and thus no task/feature is overlooked.

Limited overhead. Instead of trying to homogenize the gradients with respect to the shared parame-
ters,∇φ,θshpθ ·∇pθL in Eq. (2) and Fig. 1 show that it is enough to homogenize the feature gradients
with respect to y, that is, to homogenize ∇yηd · ∇ηdpθ · ∇pθL for all d = 1, 2, . . . , D. This is a
common choice in MTL to reduce computational overhead when possible.

Choosing algorithms. Similar to the regularization cocktail proposed by Kadra et al. [13] to train
neural networks for tabular data, we propose a multi-objective cocktail to find the proper combination
of MOO algorithms per dataset and model, running a hyperparameter sweep where we consider the
use of a MOO algorithm as a binary hyperparameter.

4 Results and conclusions

To assess MOO algorithms on heterogeneous VAEs, we compare model performance in terms of
reconstruction error. We consider 9 different heterogeneous datasets—with (log-)normal, categorical,
and Poisson likelihoods—and 4 different models: VAE [15], IWAE [3], DReG [37], and HI-VAE [26].
A detailed description of the experimental setup can be found in Appendix A.

For the hyperparameter sweep, we consider all possible combinations of algorithms that deal with
disparities in gradient magnitude [5, 30, 18], and gradient direction [44, 6]. Table 1 summarizes the
final results. It shows that finding the proper combination of MOO algorithms significantly boosts
the results across all models and datasets. While there is one case where the results do not improve
(HI-VAE in HI), for most of the settings the improvements are outstanding. For example, all models
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perform the best in rwm5yr after applying MOO. Remarkably, the original VAE heavily benefits from
MOO, suggesting that simpler models can obtain outstanding results if we properly optimize them.

In this paper, we have bridged the gap between VAEs and MTL, and demonstrated that we can
leverage existing knowledge from other fields to improve probabilistic models. As a promising
research direction, we hope to explore other scenarios where MOO can further benefit probabilistic
models, such as Gaussian Processes [41] or probabilistic multi-modal data modelling [31].
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A Experimental details

A.1 Dataset descriptions

Likelihood selection. Choosing the proper likelihood is a hard task which requires expert-domain
knowledge for each specific setting. We attempt to simplify this process, and instead automatize
likelihood selection based on basic properties of the data that can be programmatically verified.
Specifically, we use the following criteria:

Real-valued: xd ∼ N (µ, σ)
Positive real-valued: xd ∼ logN (µ, σ)
Count: xd ∼ Poiss(λ)
Binary: xd ∼ Bern(p)
Categorical: xd ∼ Cat(π1, π2, . . . , πK)

Datasets. For the experiments shown in § 4, we use nine different heterogeneous datasets. First, we
took Adult, defaultCredit, Wine, and Bank marketing datasets from the UCI repository [8]. Then, we
included from the R package datasets [1] the following datasets: Diamonds, Movies (IMDB), Health
Insurance (HI), German health registry (rwm5yr), and labour. Table 2 provides the statistics per
dataset in terms of sizes and number of likelihoods. It is important to remark that the IMDB and
Adult datasets contain NaNs values (each only in two of the features). We replace them by non-NaNs
values and ignore them during training and evaluation using binary masks.

Table 2: Datasets description. The first two columns describe number of instances, N , and number of
features, D. The next columns describe the number of specific likelihoods per dataset.

Dataset N D Real Positive Count Categorical

Adult 32561 12 0 3 1 7
Credit 30000 24 6 7 1 10
Wine 6497 13 0 11 1 1
Diamonds 53940 10 7 0 0 3
Bank 41188 21 10 0 0 11
IMDB 28819 23 4 1 10 8
HI 22272 12 5 1 0 6
rwm5yr 19609 16 0 2 3 11
labour 15992 9 3 0 2 4

Preprocessing. When parsing the dataset, we centre all real-valued features by removing their mean.
We further standardize real-valued features, computing their (training) standard deviation and dividing
the data by this quantity. We perform the same standardization by in the log-space for positive real-
valued features. These last two steps are omitted for HI-VAE, since it uses its own normalization layer
as described by Nazabal et al. [26]. We also treat non-negative as positive real-valued features by
adding a negligible value of 1× 10−20. Finally, we make sure that the support of count, binary, and
categorical features are in accordance to that of the library used during implementation by removing
their minimum value in the case of binary and categorical features, and 1 in the case of count features.

Additionally, we performed some extra preprocessing to the IMDB dataset. In said dataset, there are
ten features that contain rating percentages of users to the movies, ranging from 0 to 100, at intervals
of 0.5. We convert each of them into discrete features starting from one by performing x′d = 2xd + 1
to each of these features, treating them afterwards as count data.

A.2 Multi-objective cocktail

As explained in § 2.2 and § 4, for the multi-objective cocktail we consider multi-objective solutions
that attempt to homogenize the gradient across features. This type of solutions can be classified in
two big groups. First, solutions that scale the gradients according to different criteria. That is, they
replace each gradient ∇dL with ωd∇dL, where each MOO algorithm sets ωd differently. Second,
direction-aware algorithms. These algorithms attempt to solve issues from gradients pointing towards
different places of the parameter space, thus cancelling out each other.
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Therefore, for the multi-objective cocktail we consider all the possible combinations between the
following two blocks:

• Magnitude-aware: i) nothing; ii) GradNorm [5]; iii) MGDA-UB [30]; iv) IMTL-G [18].

• Direction-aware: i) nothing; ii) GradDrop [6]; iii) PCGrad [44].

This amounts to a total of 12 combinations, plus the hyperparameter of specific algorithms. In this
case, we only tune the α parameter from GradNorm between the values zero and one.

A.3 Experimental settings

We train all experiments using Adam as optimizer, with a learning rate of 0.001 for all models.
For all models (except HI-VAE) we set the batch size to 128, and train for 400 epochs for the all
datasets (except for Wine with 2000 epochs). For HI-VAE, we set the batch size to 1000 and the
number of epochs to 2000 as in the original paper. We randomly split the data into training (70%),
validation (10%), and testing (20%).

We set the latent size of Z, d, to 50% of the number of features of the dataset, D, and the hidden size
of each layer to 50 for all the experiments, except for those of the Bank dataset which are set to 100.

Metric. Since we deal with heterogeneous data, where each feature has different type and range,
we compute the reconstruction error using metrics that account for these differences. For numerical
features (real, positive, and count data) we compute the normalized root mean squared error:

err(d) =
1

N

||xd − x̂d||2
max (xd)−min (xd)

, (3)

where x̂ is the model prediction. For the case of nominal features (categorical and binary data) we
use the error rate as reconstruction error:

err(d) =
1

N

N∑
n=1

I(xn,d 6= x̂n,d). (4)

The final metric shown in Table 1 is the average across dimensions, err = 1
D

∑
d err(d).

Model selection. In order to make fair comparisons, for each model and dataset we first tuned
the hyperparameters (for example, hidden/latent/batch size, number of epochs, etc.) for the vanilla
implementations (i.e., without MOO). To this end, we ran grid searches and averaged the validation
metric over five random seeds, just as in Table 1, choosing the set of hyperparameters that performed
the best in terms of reconstruction error during validation. Note that all these hyperparameters
(including optimization hyperparameters such as learning rate) are shared across all methods of
the same setting. Additionally, we verified that the vanilla models were performing well by visual
inspection of the marginal reconstructions.

Multi-objective cocktail selection. Similar to model selection, we chose the best combinations of
MOO by averaging over five random seeds and taking the combination of methods that performed the
best in terms of reconstruction error in validation. In general, it was enough to focus on the median
to select the best combination. However, some combinations happened to overfit, and therefore we
needed to choose those having a good balance between median, mean, and standard deviation.

Statistical test. In order to compare the performance of the proposed method with vanilla, we employ
the corrected paired t-test [25]. The usual paired t-test assumes that the data used to perform the
test is independently sampled, which usually does not hold in the machine learning as we sample
the training and test data from the same distribution. As a consequence, paired t-test might suggest
statistical significance between the compared models, whereas there is no such significance (type I
error). Corrected paired t-test considers the dependency of the sampled data, correcting the variance
of the differences of the paired samples in the two testing models.

A.4 Models

In this section we explain all the architectural details for each model, please refer to the original
papers for a detailed explanation of each model. We use the following notation to describe the models:
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• D - number of features.
• D′ - total number of likelihood parameters.
• d - latent size.
• h - hidden size.
• [Linear-h] - Linear layer with output of size h.
• [Dropout-10%] - Dropout Srivastava et al. [32] with 10% of dropping probability.
• [ReLU]- Rectified linear unit activation function.
• [Tanh]- Hyperbolic tangent activation function.

A.4.1 Variational autoencoder (VAE)

We implement the original VAE [15] assuming the following probabilistic model:

Prior: p(Z) = N (0, I)

Likelihood: pθ(X|Z) =
∏
d pd(xd|ηd(Z; θ))

Variational approx.: qφ(Z|X) = N (µ(X;φ), σ(X;φ)).

Here µ and σ are modelled by the encoder, and all ηd are jointly modelled by the decoder. These two
neural networks are of the following form:

• Encoder: [Dropout-10%][BN][Linear-h][Tanh][Linear-h][Tanh][Linear-h][Tanh][Linear-2d].
• Decoder: [Linear-h][ReLU][Linear-h][ReLU][Linear-h][ReLU][Linear-D′].

Additionally, we make sure that each parameter fulfils its distributional constraints (e.g., the variance
has to be positive) by passing it through a softplus functions when necessary. It is also important
to note that, while we parametrize the latent space using the mean and standard deviation, we
parametrize the parameters of the likelihoods using their natural parameters.

Loss. We use the negative ELBO as training loss:

ELBO(X, θ, φ) := Eqφ [log pθ(X|Z)]−KL(qφ(Z)‖ p(Z)). (5)

Imputation. We impute data by taking the modes of qφ(z|X) and pd(xd; ηd(Z; θ)).

MOO. As explained in the main text, for this model we simply apply the MOO algorithms on the
last-shared feature y (see Fig. 1).

A.4.2 Importance weighted autoencoder (IWAE)

Importance weighted autoencoder (IWAE) [3] shares the same settings as VAE, being the only
difference the training loss.

Loss. Instead of maximizing the ELBO, IWAE maximizes a tighter loss that makes use of K i.i.d
samples from Z:

IWAE(X, θ, φ) := EZ1,...,ZK∼qφ

[
log

1

K

∑
k

pθ(X|Zk)p(Zk)
qφ(Zk|X)

]
. (6)

For all the results shown in Table 1 we set the number of importance samples to K = 20.

A.4.3 Doubly reparametrized gradient estimator (DReG)

Rainforth et al. [28] showed long time ago that the gradient estimators produced by IWAE had some
undesired properties that could hamper properly learning the inference parameters (encoder). A strict
improvement of this negative result was provided by Tucker et al. [37], as they provided a simple
way of addressing these issues by applying the reparametrization trick a second time. As a result, we
obtain again a model structurally identical to VAE, but which is optimized with two different losses:
one for the encoder, and one for the decoder. We use K = 20 importance samples as for IWAE.
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Encoder loss. For one importance sample Zk, let us define

ωk :=
pθ(X|Zk)p(Zk)

qφ(Zk)
, and ω̃k :=

ωk∑
i ωi

such that
∑
k

ω̃k = 1. (7)

Then, we optimize the parameters of the encoder by maximizing

DReGenc(X, θ, φ) := EZ1,...,ZK∼qφ

[∑
k

ω̃2
k logωk

]
, (8)

where we consider ω̃k to be a constant value (i.e., we do not backpropagate through it), and we
compute the derivative w.r.t. φ only through Z (i.e., we do not compute the partial derivative w.r.t. φ).

Decoder loss. Similarly, we optimize the parameters of the decoder by maximizing the following
loss (same assumptions on ω̃k and φ):

DReGdec(X, θ, φ) := EZ1,...,ZK∼qφ

[∑
k

ω̃k logωk

]
. (9)

MOO. As we now have two different losses, we employ two different set of parameters for the MOO
algorithms (one for the encoder, and one for the decoder).

A.4.4 HI-VAE

We have faithfully re-implemented the original version of HI-VAE [26], this includes implementing
their architecture with the same number of parameters, as well as implementing their methods (such
as the proposed normalization and denormalization layers). Regarding the architecture, we have
maintained the same one as the original authors used in their experiments. Therefore, results between
HI-VAE and the rest of the models in Table 1 are not completely comparable.

HI-VAE assumes a hierarchical latent space. Thus, we assume the following probabilistic model:

Prior: p(Z,S) = p(S)p(Z|S)
= Cat( 1

ds
, 1
ds
, . . . , 1

ds
)N (µ0(S), I)

Likelihood: pθ(X|Z) =
∏
d pd(xd|ηd(Z; θ))

Variational approx.: qφ(Z,S|X) = qφ(S|X)qφ(Z|X,S)
= Cat(π(X))N (µ(X,S;φ), σ(X,S;φ)).

Similar to VAE, µ0, µ, and σ are all neural networks, and all likelihood parameters ηd are jointly
modelled by the decoder. Note also the introduction of new variables to describe the size of each
latent variable, dz and ds. We set in our experiments dz = ds = 10, and the hidden size to h = 5D,
just as in the original paper.

Loss. We maximize the ELBO as originally proposed by Nazabal et al. [26]:

ELBO(X, pθ, qφ) := EZ,S∼qφ [log pθ(X|Z,S)]−KL(qφ(Z,S)‖ p(Z,S)). (10)

MOO. Like in the VAE case, we apply MOO at the last shared feature produced by the model.
However, in this case there are two last shared features, y (as before), and S. Therefore, we use two
different set of parameters for each of the last shared features.
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